Two-Minute Vocal Test and Acoustic Analysis Reveal Voice and Speech Disorders in Early Untreated Parkinson’s Disease

Jan Rusz1,2, Roman Cmejla1, Hana Růžičková1, Jiří Klempíř1, Veronika Majerová1, Jana Picmausová1, Jan Roth1, Evžen Růžička2

1Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Czech Republic
2Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Signal Analysis Modelling and Interpretation Group, Czech Republic

Disorders of voice and speech in Parkinson’s disease (PD) affect all subsystems including respiration, phonation, articulation, and prosody [1-3]. Quick vocal testing consisted of sustained phonation, fast syllable repetition, and running speech was designed in order to be gender independent [4]. Main aim of this study was to separate early untreated PD from healthy control (HC) participants based upon automated acoustic analysis [5].

Patients and Data
24 PD speakers (20 men & 4 women) examined before the symptomatic treatment was started
• age 60.9 ± SD 11.2 years
• duration of PD symptoms 31.3 ± 22.3 months
• H&Y stage 2.2 ± 0.5
• UPDRS III motor score 17.4 ± 7.1
22 HC speakers (15 men & 7 women)
• no history of neurological or communication disorders
• age 58.7 ± 14.6 years

Methods

Table I: Summary of the speech data. For reproducibility of data, each task was repeated at least 2 times.

<table>
<thead>
<tr>
<th>Measure</th>
<th>HC</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained phonation</td>
<td>85.0 ± 6.1%</td>
<td>71.4 ± 8.3%</td>
</tr>
<tr>
<td>Syllable repetition</td>
<td>75.6 ± 8.3%</td>
<td>75.6 ± 8.3%</td>
</tr>
<tr>
<td>Running speech</td>
<td>81.3 ± 6.9%</td>
<td>81.3 ± 6.9%</td>
</tr>
</tbody>
</table>

Table II: Overview of the measurement methods used.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Method</th>
<th>Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained phonation</td>
<td>Voice task of sustained phonation</td>
<td>Voice and speech disorders</td>
</tr>
<tr>
<td>Syllable repetition</td>
<td>Vocal task of syllable repetition</td>
<td>Voice and speech disorders</td>
</tr>
<tr>
<td>Running speech</td>
<td>Vocal task of running speech</td>
<td>Voice and speech disorders</td>
</tr>
</tbody>
</table>

Table III: Result of the speech examination.

<table>
<thead>
<tr>
<th>Measure</th>
<th>HC</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained phonation</td>
<td>85.0%</td>
<td>71.4%</td>
</tr>
<tr>
<td>Syllable repetition</td>
<td>75.6%</td>
<td>75.6%</td>
</tr>
<tr>
<td>Running speech</td>
<td>81.3%</td>
<td>81.3%</td>
</tr>
</tbody>
</table>

Figures:

Figure 1: Details of measures used for subsequent analysis. The left panels are for a person with PD, the right panels are for a HC subject.

Figure 2: Optimal SVM parameters.

Statistics
• predictive model was built using a kernel support vector machine (SVM)
• exhaustive search of all possible measure combinations and optimal SVM parameters (C, γ)
• cross-validation with the leave-one-out method was used to validate reproducibility
• best combination of measurements was found to differentiate PD from HC subjects

Results
• 116 vocal recordings were used for classification (56 for PD/60 for HC)
• best performance of 85.0 ± 6.1% in combination of four measures that represent all PD-related affected speech subsystems
 • 81.3 ± 6.9% for running speech
 • 75.6 ± 8.3% for sustained phonation
 • 71.4 ± 8.3% for DK task

Conclusions
• method demonstrated that it can accurately differentiate PD patients from HCs
• subtle abnormalities such as reduced melody in running speech were detectable from the early stage of PD
• acoustic analysis may serve as a simple screening test in view of the expected advent of neuroprotective treatment
• acoustic vocal tests can be used for clinical monitoring of speech progression, effect of medication on speech production, and feedback in voice treatment

References

Acknowledgment
This research was partly supported by the Czech Science Foundation, project GACR 15-18311G, Czech Ministry of Health, projects NT 10313/09/2010 and NT 12388-5/2011, Grant Agency of the Czech Technical University in Prague, project SGS 10/38/09/2012 and SGS 12/2711/1, and Czech Ministry of Education, projects MSM 0021660513 and MSM 6840770012.